direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Inhalt des Dokuments



The department of “Mechanics – Structural Mechanics and Analysis” (SMB) represents an exciting combination of experimental and computational aspects of mechanical engineering. This research and teaching field plays a crucial role in modern mechanical engineering and becomes more and more important in view of digitalization processes entering all fields of manufacturing, logistics and product lifetime. The investigations in this direction enable an efficient simulation of complex structures under various, often extreme conditions, as well as the application of sustainable and recyclable materials and their efficient exploitation. The novel strategies such as multiscale simulations, isogeometric analysis and machine learning open up new horizons: On the one hand, the structural response enables one to go deep into the material microstructure and to optimize it according to the specific external requirements. On the other hand, data-driven computation along with the sophisticated structural elements move the limits of the contemporary finite element analysis towards a more user-friendly software that is highly flexible with regard to the range of application.

Professor Sandra Klinge – New Department Head


Dr.-Ing. habil. Sandra Klinge has been a professor for "Structural Mechanics and Structural Computation" (SMB) at the Faculty of Transportation and Machine Systems at TU Berlin since July of this year. The focus of her scientific work is the development of numerical methods for the simulation of heterogeneous materials. In this context, she has focused on the application of the multiscale finite element method to solve direct and inverse problems. The large computational effort, the strong nonconvexity, the determination of the global solution are only some of the issues characteristic for this research area.

Ms. Klinge completed the international master course "Comp-Eng" as a DAAD scholarship holder at the Ruhr-Universität Bochum. At the same university she did her doctorate and habilitation. Subsequently, she established her own research group as junior professor in "Computational Engineering" at the TU Dortmund University.  Ms. Klinge has numerous international collaborations especially in the field of biomechanics and of simulation of metal forming processes. At TU Berlin, Ms. Klinge will work on the further development of numerical methods such as statistical homogenization, isogeometric analysis and machine learning as well as on their practical application. TU Berlin offers an ideal environment for work at these topics due to its diversity, large number of excellent students and strong international scientific network.


Our current topics

Life time of additively manufactured Al alloys

Cyclic repeating plastic deformation of metals causes progressive damage in the material, which eventually leads to ductile fracture. To model and simulate such a complex process, a coupling of several methods and models is required. On the one hand, the phase field method is used to simulate the damage evolution. On the other hand, an appropriate material model is chosen to capture the plastic behavior under the cyclic load. The challenge is to find consistent frameworks for coupling both formulations. The proposed framework simulates the crack development in a specimen and enables to determine the lifetime of a metal alloy.


Strain-induced crystallization in polymers

Strain-induced crystallization is a phenomenon that occurs in polymers under high tensile strains. The crystallization process forms a second phase within the amorphous polymer matrix and leads to enhanced properties of the material. The in-house developed material model implemented in the finite element software depicts the evolution of the microstructure. This is a great advantage of the model since this phenomenon is not yet accessible experimentally.


Modeling of cancellous bone and of osteoporosis

The cancellous bone is a specific tissue consisting of the solid skeleton and the fluid marrow for whose laboratory investigation ultrasonic procedures are typically used. These experiments are numerically simulated in order to calculate the attenuation coefficient which is an important indicator of bone density and can be used to diagnose osteoporosis. The focus of the model is on the harmonic excitation and simulation of viscous effects. For this purpose, a formulation in the complex domain is assumed.


Simulation of the virus entry into a cell

The receptor driven endocytosis is typical of viral entry into a cell. The virus is considered as a substrate with fixed receptors on its surface, whereas the receptors of the host cell are free to move over its membrane, allowing a local change in their concentration. In the contact zone the membrane inflects and forms an envelope around the virus. The created vesicle imports its cargo into the cell. The model proposed assumes the diffusion equation along with a boundary condition requiring the conservation of binders to describe the process. Moreover, it introduces a condition defining the energy balance at the front of the adhesion zone. The latter yields the upper limit for the for the size of virus which can be engulfed by the cell membrane. The described moving boundary problem in terms of the binder density and the velocity of the adhesion front is well posed and numerically solved by using the finite difference method.


Zusatzinformationen / Extras


Schnellnavigation zur Seite über Nummerneingabe